

THERMOWELLS

Thermowells

Standard and Custom-Drilled Bar-Stock Designs

oma measing

Page
Table of Contents
Introduction
Thermowell Design and Selection Criteria 4
Thermowell Materials
Standard-Duty, Threaded Thermowells 6 & 7
Heavy-Duty, Threaded Thermowells
Straight-Shank, Threaded Thermowells
Limited-Space Thermowells
Straight-Shank, Socket-Weld Thermowells
Heavy-Duty, Socket-Weld Thermowells
Reduced-Tip, Socket-Weld Thermowells
Weld-In Thermowells
Sanitary, Weld-In Thermowells
Standard, Flanged Thermowells
Heavy-Duty, Flanged Thermowells
Reduced-Tip, Flanged Thermowells
Heavy-Duty, Van Stone Thermowells
Straight Van Stone Thermowells
Reduced-Tip Van Stone Thermowells
Sanitary-Connected Thermowells
W81 Series Sanitary, Weld-In Thermowells
Thermowell Options and Specifications 40
ANSI Flanged Thermowell Data Sheet 41
Maximum Allowable Working Pressure Tables 42 & 43
Corrosive Service Guide
Thermowell Design Evaluator
Sample Thermowell Design Evaluator Report 47

Introduction

When Temperature Is Critical, Think Pyromation

U.S. manufactured temperature sensors, thermowells, components, complete assemblies and support services - all under one roof.

Pyromation began operations in 1962 and is one of the leading producers of temperature sensors in the world. With applications in almost every industry and sales in over 45 countries, Pyromation has become an international business while maintaining close relationships with its customers.

As a vertically integrated manufacturer that produces thermowells and connection heads in addition to temperature sensors, we can quickly respond to your complete sensor needs while maintaining competitive costs and quality control. We have an onsite NVLAP-accredited Metrology Laboratory performing calibrations and Non-Destructive Testing (NDT) capabilities on location. These and other in-house operations allow us to deliver most orders within four business days, with same-day, 24-hour or 72-hour express shipments available on request.

Our experienced sales team is accessible, personable and ready to work with you on your specific applications. Try our online configurator at www.pyromation.com, or talk with a member of our sales team regarding custom designs. These are some of the sensor assemblies we make:

- · Industrial Thermocouple Elements, Protection Tubes and Assemblies
- · Waste Incineration Thermocouples
- Magnesium Oxide Insulated (MgO) Thermocouples
- · Temperature Sensors for the Plastics, Rubber and Packaging Industries
- General Purpose RTDs
- CIP Sanitary-Connected, high-accuracy RTDs for Food, Dairy and Pharmaceutical applications
- · Programmable Temperature Transmitters
- · Insertion Probes
- · Heat Tracing Sensors
- · Tube Skin Thermocouples
- · Aggregate Thermocouples
- Cerite[®] Assemblies
- Threaded, Socket-Weld, Weld-In, Flanged, Van Stone, and Sanitary Thermowells
- Connection Heads including explosion proof types
- Temperature Sensor Accessories
- · Complete Assemblies
- · Custom Designs
- · And much more

The combination of personalized service, quick delivery and a broad line of superior quality temperature sensing products provide the best solutions for all of your temperature measurement applications. In essence, Pyromation delivers speed, service, solutions...beyond measure®.

The Right Thermowell for Your Application

Can you risk using thermowells produced overseas or not specifically designed to last in your application? We design and produce superior quality thermowells right here in our Fort Wayne, Indiana plant, which means you get custom designs, technical support, precision machining, incredible strength and durability, a professional finish and the fastest turnaround time in the industry. Combined with our competitive pricing, application expertise and technical support, you won't find a better source for thermowell components or complete temperature sensor assemblies.

As a comprehensive manufacturer of temperature measurement assemblies and components, Pyromation offers a wide variety of drilled bar stock and flanged thermowells to protect temperature sensing instruments from the corrosive elements, high pressure and high velocities that can be present in many industrial process applications.

We're here to answer your questions. Our sales people average nearly 25 years of experience and have application expertise in almost every industry. They'll help you find the right thermowell for your specific application. If the thermowell you need is not shown in our catalog, Pyromation's sales and engineering staff will custom design the best thermowell to meet your needs while maintaining a competitive price.

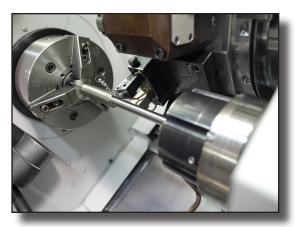
Feel the Heat with Pyromation

Our drilled barstock thermowells are machined from NACE compliant materials, including 304 and 316 stainless steel, Hastelloy® C276, carbon steel, chrome molybdenum and others. After production, we polish our thermowells to a minimum surface finish of 32 μ in R_a and mark them to ensure material traceability.

Both barstock and flanged thermowells are available in several different physical configurations, a variety of materials, choice of bore sizes, and various process connection types including threaded, socket-weld, weld-in, and flanged. Thermowells are available as separate components or as a part of complete temperature sensor assemblies.

Pyromation's thermowells have a proven track record in a wide range of applications and industries including:

- · Food and Beverage
- · Oil and Gas
- Pharmaceutical
- · Chemical
- Dairv
- · Pulp and Paper
- Wastewater
- Power Generation
- Petro-chemical



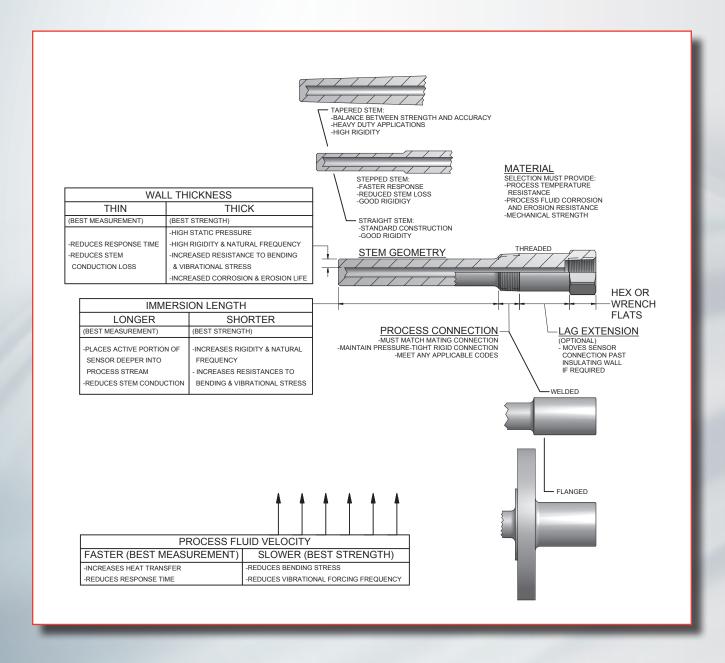
You can rely on Pyromation because we've done the background work and received the certifications to provide you with thermowells that meet the codes and standards required for your application.

Pyromation's thermowell design and inspection techniques are compliant with ASME B31.3 standard for process piping applications. The maximum allowable working pressure calculations have been verified by a third party ISO 9001:2000 certified Professional Engineer (PE). Standard thermowell designs comply with ASME PTC 19.3 and wake frequency calculations are available upon request, or you can submit your process calculations online via our Thermowell Design Evaluator at www.pyromation.com. Our flanged thermowells are manufactured from ASME B16.5 flanges and fabricated with ASME certified welders and welding processes.

Pyromation's products are UL, CSA and FM approved, including specific thermowell assemblies rated for hazardous locations. A Canadian Registration Number (CRN) is available on most designs. We also produce thermowells that meet 3A requirements for sanitary applications.

Non-Destructive Testing (NDT) and accompanying documentation is available upon request for any thermowell order.

Besides meeting rigorous industry standards, our thermowells are produced in Pyromation's ISO 9001 registered facility, ensuring consistency and the highest quality in everything we make.


These are just a few of the reasons the Pyromation thermowell product line is known to deliver Quality in Every Degree®.

 ${\sf Hastelloy}^{\it (\!B\!)} \text{ is a registered trademark of Haynes International}$

Thermowell Design and Selection Criteria

A thermowell is a pressure-tight receptacle that protects and extends the life of a temperature sensor in processing applications where the sensor is not mechanically or chemically compatible with the process environment. Installed directly into piping, vats or other parts of process systems, thermowells facilitate sensor replacement in high pressure pipelines and eliminate the need to interrupt the process flow or drain of the process system for sensor maintenance functions. The use of standardized thermowells permits simple relocation of sensors throughout a plant.

Strength versus accurate and fast temperature measurement is a balancing act. The factors which tend to produce high strength also tend to reduce the temperature sensor's accuracy and speed of response. A properly selected thermowell will balance these opposing factors to produce a design capable of functioning satisfactorily in the intended application. The listed factors are a general guide and are not all-inclusive. Refer to ASME Performance Test Code 19.3 for a more authoritative dissertation on proper thermowell selection.

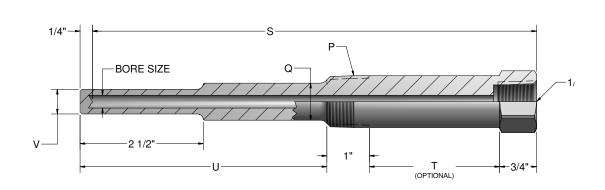
Thermowell Materials

Code	Description	UNS Number	Trade Names	Code	Description	UNS Number	Trade Names
03	Alloy 600	N06600	Inconel®	35	321 SS	S32100	
04	310 SS	S31000		36	347 SS	S34700	
05	446 SS	S44600		37	Alloy 800	N08800	Incoloy®
06	C1018	G10180		38	Alloy 20	N08020	Carpenter®
07	Alloy 601	N06601	Inconel®	41	HR-160	N12160	Haynes®
08	316 SS/316 L	S31603		50	Zirconium	R60702	
09	304 SS/304 L	S30403		51	Alloy X		Hastelloy®
22	Brass			56	Teflon®		Teflon®
27	Alloy 400	N04400	Monel [®]	59	F22	K21590	
28	Alloy B-3	N10675	Hastelloy®	60	F11	K11572	
29	Alloy C-276	N10276	Hastelloy®	61	A105	K03504	
31	Nickel 200	N02200		91	F91	K91560	
*Consu	*Consult factory for other materials.						

Incoloy®, Monel®, and Inconel® are registered trademarks of Special Metals Corporation group of companies.

Haynes® and Hastelloy® are registered trademarks of Haynes International, Inc.

Carpenter® is a registered trademark of SPS Technologies.


Teflon® is a registered trademark of E.I. du Pont de Nemours and Company

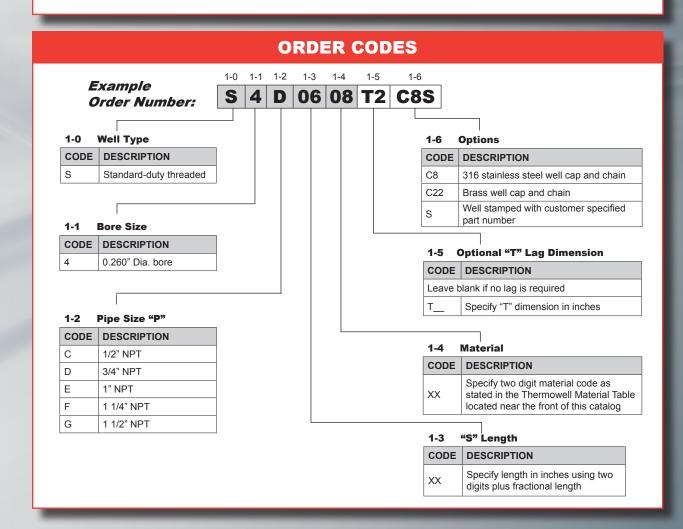
Standard-Duty, Threaded Thermowells

Standard-Duty, Threaded Thermowells are available in a variety of materials, process connection sizes, lengths, and optional lagging extensions. Thermowell specifications should be determined based on process conditions, which include strength, temperature, pressure and corrosion resistance requirements. The stepped construction is used in standard duty applications and increases the speed of response while maintaining mechanical strength. They are designed with standard 0.260" bore diameters to accommodate sensing elements with a 0.252" maximum diameter. These wells are available as separate components or as part of complete sensor assemblies.

+ = Wells are made from round bar with milled wrench hex. 1 1/4" NPT and 1 1/2" NPT wells are supplied as round bar with milled wrench flats.

("U" length for non-lagging wells) = "S" -1 1/2" ("U" length for lagging wells) = "S" - 1 1/2" - "T" (To solve for "T"), "T" = "S" - "U" -1 1/2" (When "U" and "S" are specified)

[1] For wells with 1/2" NPT; 1" process thread length and 3/4" hex length dimensions above are reversed.

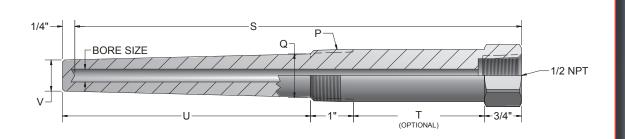

"P"	"Q"	"V"
1/2" NPT ^[1]	5/8" Dia.	1/2" Dia.
3/4" NPT	3/4" Dia.	1/2" Dia.
1" NPT	7/8" Dia.	1/2" Dia.
1 1/4" NPT	1 1/4" Dia.	7/8" Dia.

1 1/2" Dia.

7/8" Dia.

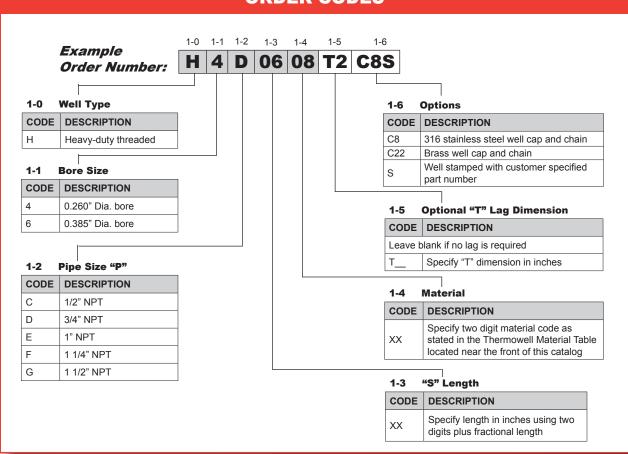
Thermowell Dimensions

1 1/2" NPT



Heavy-Duty, Threaded Thermowells

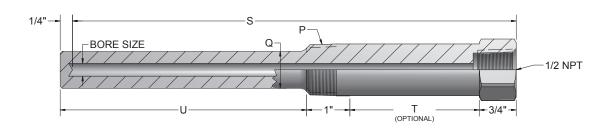
Heavy-Duty, Threaded Thermowells are available in a variety of materials, process connection sizes, lengths and optional lagging extensions. Thermowell specifications should be determined based on process conditions which include strength, temperature, pressure and corrosion resistance requirements. They are designed with a standard 0.260" or 0.385" bore diameter to accommodate sensing elements with a 0.252" or 0.377" maximum diameter respectively. The tapered design is suited for heavy duty applications where greater rigidity is required for increased pressure and flow process conditions. These wells are available as separate components or as part of complete sensor assemblies.


+ = Wells are made from round bar with milled wrench hex. 1 1/4" NPT and 1 1/2" NPT wells are supplied as round bar with milled wrench flats.

("U" length for non-lagging wells) = "S" -1 1/2" ("U" length for lagging wells) = "S" -1 1/2" - "T" (To solve for "T"), "T" = "S" - "U" -1 1/2" (When "U" and "S" are specified)

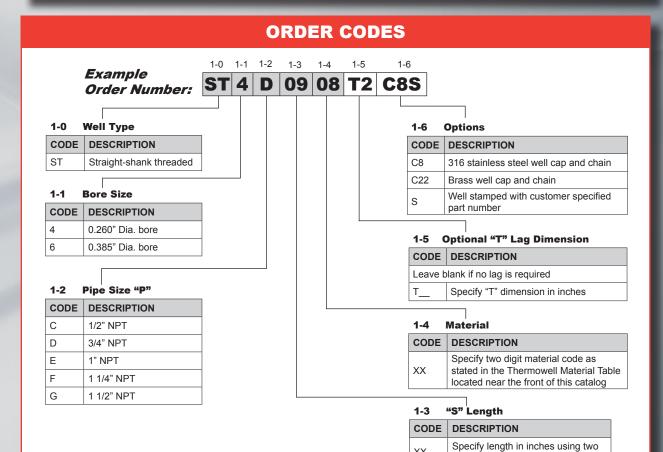
Maximum tapered length is 16"

"P"	"Q"	"V" (0.260")	"V" (0.385")
1/2" NPT	11/16" Dia.	5/8" Dia.	N/A
3/4" NPT	7/8" Dia.	5/8" Dia.	49/64" Dia.
1" NPT	1 1/16" Dia.	5/8" Dia.	49/64" Dia.
1 1/4" NPT	1 3/8" Dia.	7/8" Dia.	7/8" Dia.
1 1/2" NPT	1 5/8" Dia.	1" Dia.	1" Dia.



Straight-Shank, Threaded Thermowells

Straight-Shank, Threaded Thermowells are available in a variety of materials, process connection sizes, lengths, and optional lagging extensions. Thermowell specifications should be determined based on process conditions, which include strength, temperature, pressure and corrosion resistance requirements. They are designed with a standard 0.260" or 0.385" bore diameter to accommodate sensing elements with a 0.252" or 0.377" maximum diameter respectively. These wells are available as separate components or as part of complete sensor assemblies.



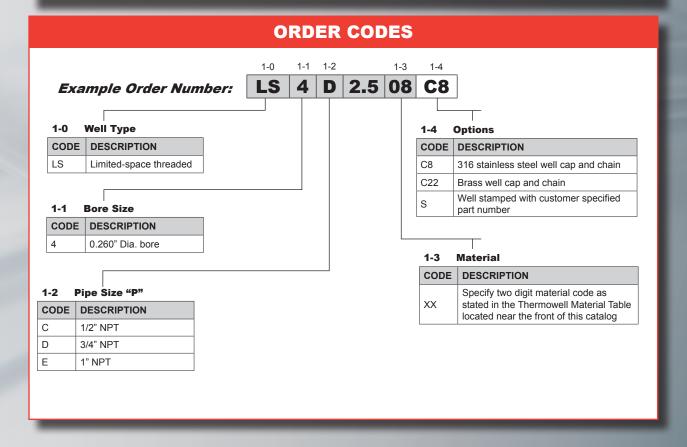
+ = Wells are made from round bar with milled wrench hex. 1 1/4" NPT and 1 1/2" NPT wells are supplied as round bar with milled wrench flats.

("U" length for non-lagging wells) = "S" $-1 \frac{1}{2}$ " ("U" length for lagging wells) = "S" - 1 1/2" - "T"
(To solve for "T"), "T" = "S" - "U" -1 1/2" (When "U" and "S" are specified)

Thermowell Dimensions

"P"	"Q"	
1/2" NPT	5/8" Dia.	
3/4" NPT	3/4" Dia.	
1" NPT	7/8" Dia.	
1 1/4" NPT	1 1/4" Dia.	
1 1/2" NPT	1 1/2" Dia.	

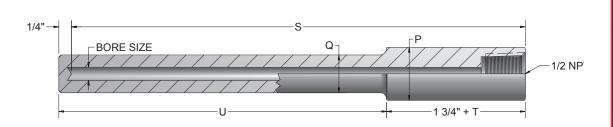
XX


digits plus fractional length

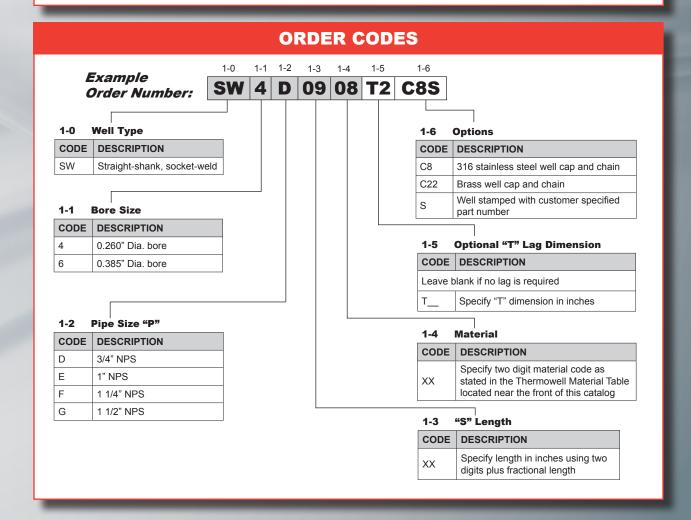
Limited-Space Thermowells

Limited-Space Thermowells are available in a variety of materials and process connection sizes. Thermowell specifications should be determined based on process conditions, which include strength, temperature, pressure and corrosion resistance requirements. They are intended for use in piping systems where space is limited. They are designed with standard 0.260" bore diameter to accommodate sensing elements with a 0.252" maximum diameter. These wells are available as separate components or as part of complete sensor assemblies.

3/4" and 1" NPT 1/2" NPT 3/16" BORE SIZE 1/2 NPT 1/2 NPT 1/2 NPT



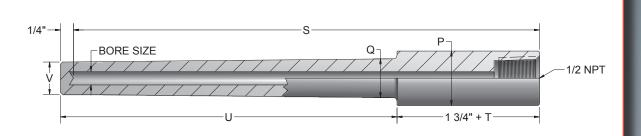
Straight-Shank, Socket-Weld Thermowells



Straight-Shank, Socket-Weld Thermowells are available in a variety of materials, process connection sizes, lengths, and optional lagging extensions. Thermowell specifications should be determined based on process conditions, which include strength, temperature, pressure and corrosion resistance requirements. The Straight-Shank, Socket-Weld is designed to be used with a 3000 class weld-o-let, which allows the thermowell to be welded permanently into the process. They are designed with a standard 0.260" or 0.385" bore diameter to accommodate sensing elements with a 0.252" or 0.377" maximum diameter respectively. These wells are available as separate components or as part of complete sensor assemblies.

("U" length for non-lagging wells) = "S" -1 1/2" ("U" length for lagging wells) = "S" -1 1/2" - "T" (To solve for "T"), "T" = "S" - "U" -1 1/2" (When "U" and "S" are specified)

"P" P	IPE SIZE	
NOM.	DIA.	"Q"
3/4"	1.050"	3/4" Dia.
1"	1.315"	7/8" Dia.
1 1/4"	1.660"	1 1/4" Dia.
1 1/2"	1.900"	1 1/2" Dia.



Heavy-Duty, Socket-Weld Thermowells

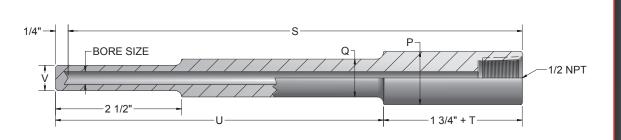
Heavy-Duty, Socket-Weld Thermowells are available in a variety of materials, process connection sizes, lengths and optional lagging extensions. Thermowell specifications should be determined based on process conditions, which include strength, temperature, pressure and corrosion resistance requirements. The Heavy-Duty Socket-Weld is designed to be used with a 3000 class weld-o-let, which allows the thermowell to be welded permanently into the process. They are designed with a standard 0.260" or 0.385" bore diameter to accommodate sensing elements with a 0.252" or 0.377 maximum diameter respectively. The tapered design is suited for heavy duty applications where greater rigidity is required due to process conditions. These wells are available as separate components or as part of complete sensor assemblies.

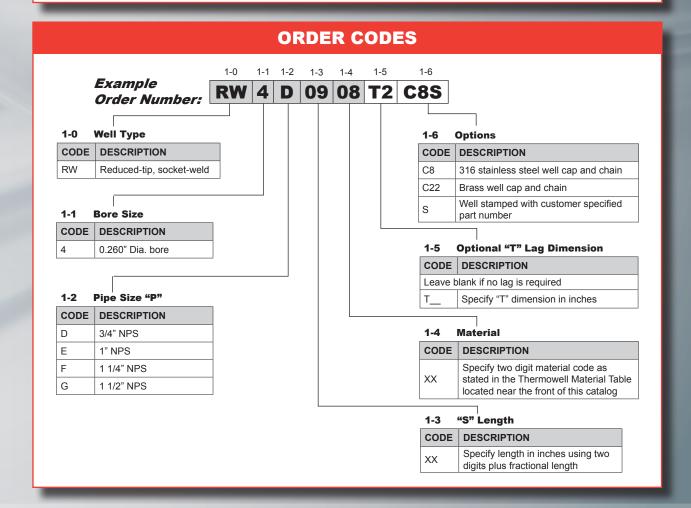


("U" length for non-lagging wells) = "S" -1 1/2" ("U" length for lagging wells) = "S" -1 1/2" - "T" (To solve for "T"), "T" = "S" - "U" -1 1/2" (When "U" and

"S" are specified)

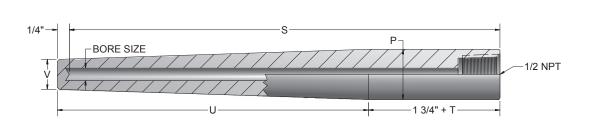
"P" P	"P" PIPE SIZE		"V"	"V"
NOM.	DIA.	"Q"	0.260	0.385
3/4"	1.050"	3/4" Dia.	5/8" Dia.	5/8" Dia.
1"	1.315"	7/8" Dia.	5/8" Dia.	49/64" Dia.
1 1/4"	1.660"	1 1/4" Dia.	7/8" Dia.	7/8" Dia.
1 1/2"	1.900"	1 1/2" Dia.	7/8" Dia.	7/8" Dia.


Reduced-Tip, Socket-Weld Thermowells

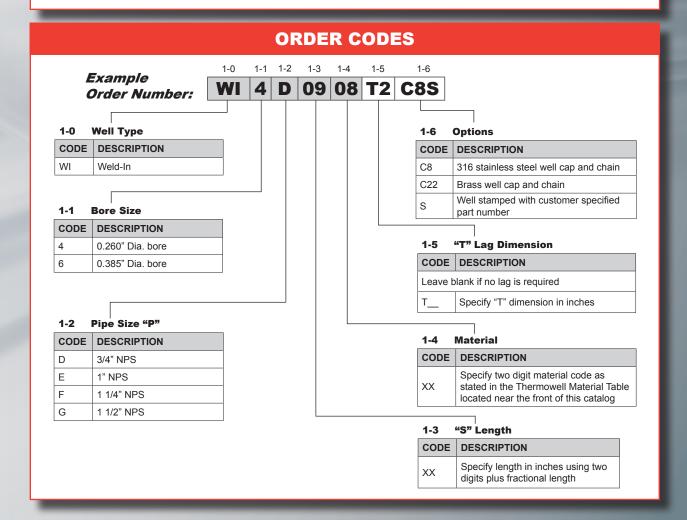

Reduced-Tip, Socket-Weld Thermowells are available in a variety of materials, process connection sizes, lengths, and optional lagging extensions. Thermowell specifications should be determined based on process conditions, which include strength, temperature, pressure and corrosion resistance requirements. The Reduced-Tip, Socket-Weld is designed to be used with a class 3000 weld-o-let, which allows the thermowell to be welded permanently into the process. The stepped construction is used in standard duty applications and increases the speed of response while maintaining mechanical strength. They are designed with standard 0.260" bore diameters to accommodate sensing elements with a 0.252" maximum diameter. These wells are available as separate components or as part of complete sensor assemblies.

("U" length for non-lagging wells) = "S" -1 1/2" ("U" length for lagging wells) = "S" -1 1/2" - "T" (To solve for "T"), "T" = "S" - "U" -1 1/2" (When "U" and "S" are specified)

"P" PIPE SIZE		" •"	
NOM.	DIA.	"Q"	" V "
3/4"	1.050"	3/4" Dia.	1/2" Dia.
1"	1.315"	7/8" Dia.	1/2" Dia.
1 1/4"	1.660"	1 1/4" Dia.	7/8" Dia.
1 1/2"	1.900"	1 1/2" Dia.	7/8" Dia.

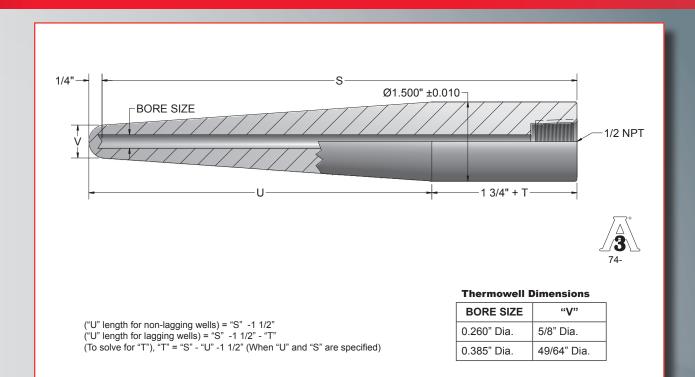


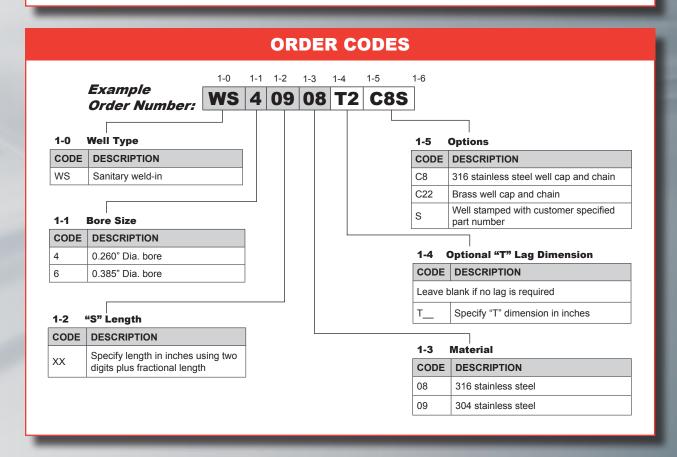
Weld-In Thermowells


Weld-In Thermowells are available in a variety of materials, process connection sizes, lengths and optional lagging extensions. Thermowell specifications should be based on process conditions, which include strength, temperature, pressure and corrosion resistance requirements. Weld-In thermowells are welded directly into the process apparatus. They are designed with a standard 0.260" or 0.385" bore diameter to accommodate sensing elements with a 0.252" or 0.377" maximum diameter respectively. The tapered design is suited for heavy duty applications where greater rigidity is required due to process conditions. These wells are available as separate components or as part of complete sensor assemblies.

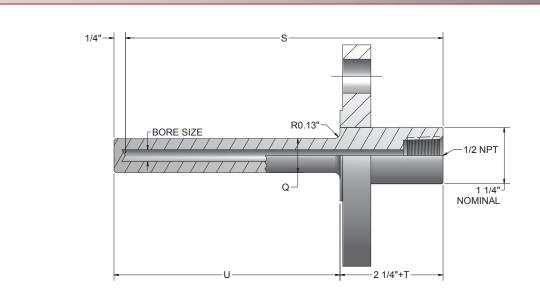
("U" length for non-lagging wells) = "S" -1 1/2" ("U" length for lagging wells) = "S" -1 1/2" - "T" (To solve for "T"), "T" = "S" - "U" -1 1/2" (When "U" and "S" are specified)

"P" PIF	PE SIZE			
NOM.	DIA.	"V" (0.260")	"V" (0.385")	
3/4"	1.050"	5/8" Dia.	49/64" Dia.	
1"	1.315"	49/64" Dia.	49/64" Dia.	
1 1/4"	1.660"	1" Dia.	1" Dia.	
1 1/2"	1.900"	1 1/8" Dia.	1 1/8" Dia.	

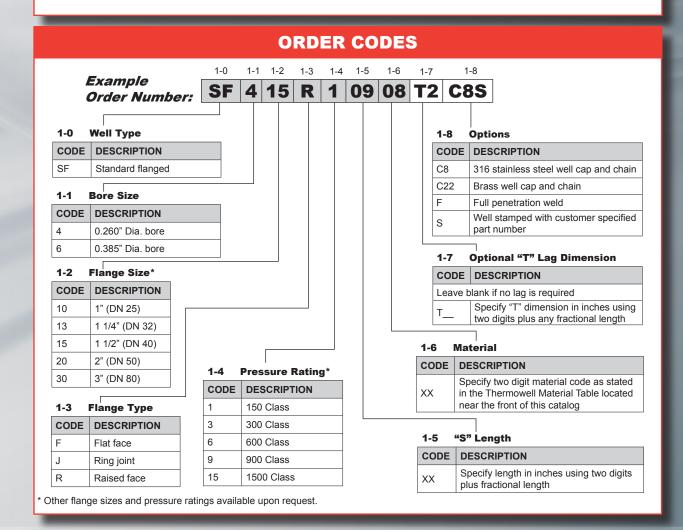



Sanitary, Weld-In Thermowells

Sanitary, Weld-In Thermowells are offered in 304 and 316 stainless steel. They are available in a variety of lengths, process connection sizes, and optional lagging extensions. The thermowell is to be welded into a tank or vat with a full crevice-free fillet-weld to prevent corrosion, bacteria growth, and product contamination. Thermowells are supplied with a surface finish that meets or exceeds 32 μ in R_a. Surface finishes of 15 μ in R_a or better are available upon request. They are designed with a standard 0.260" or 0.385" bore diameter to accommodate sensing elements with a 0.252" or 0.377" maximum diameter respectively. These wells are available as separate components or as part of complete sensor assemblies.

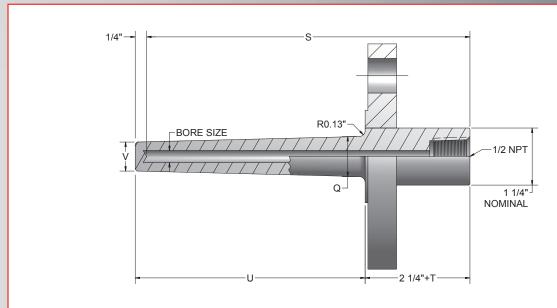


Standard, Flanged Thermowells

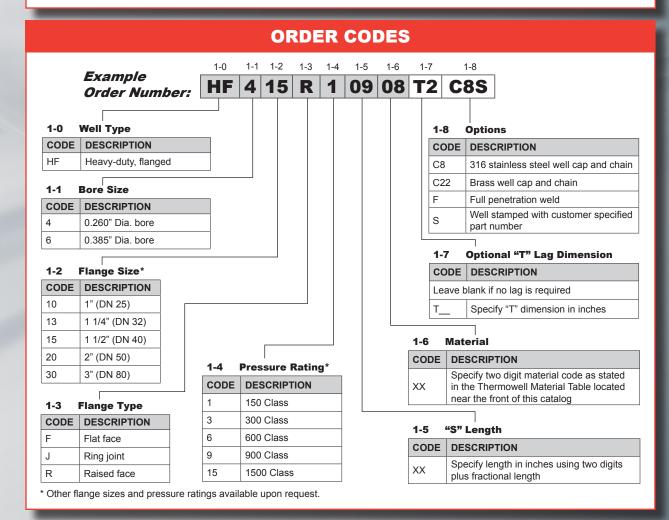

Standard, Flanged Thermowells are available in a variety of materials, flange types, flange sizes, and pressure ratings. They are also available in various lengths and optional lagging extensions. Thermowell specifications should be determined based on process conditions, which include strength, temperature, pressure and corrosion resistance requirements. The standard, flanged thermowell is supplied with a straight shank and is designed with a 0.260" or 0.385" bore diameter to accommodate sensing elements with a 0.252" or 0.377" maximum diameter respectively. These wells are available as separate components or as part of complete sensor assemblies.

(("U" length for non-lagging wells) = "S" - 2"
(("U" length for lagging wells) = "S" - 2" - "T"
((To solve for "T"), "T" = "S" - "U" - 2" (When "U" and "S" are specified)

BORE	"Q" Dim.
0.260	3/4"
0.385	7/8"

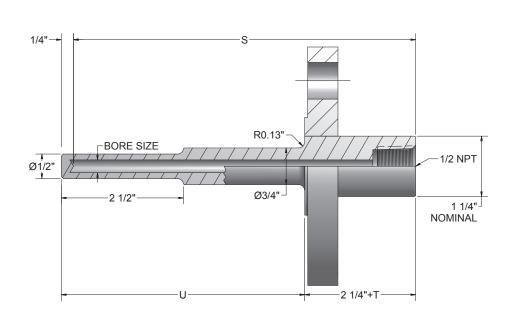


Heavy-Duty, Flanged Thermowells

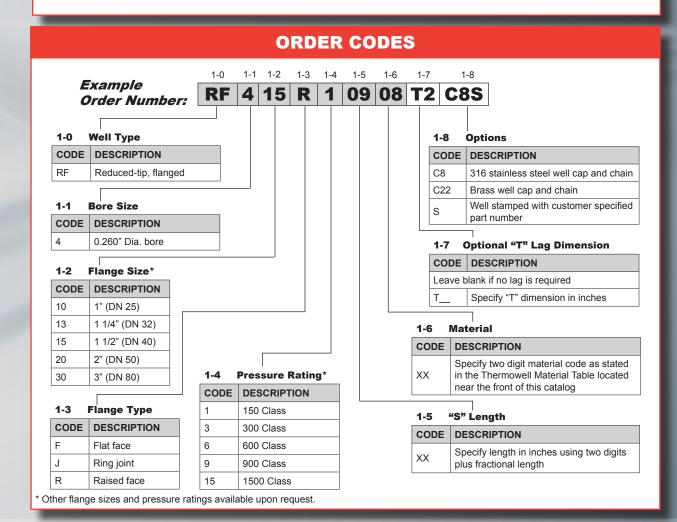

Heavy-Duty, Flanged Thermowells are available in a variety of materials, flange types, flange sizes, and pressure ratings. They are also available in various lengths and optional lagging extensions. Thermowell specifications should be determined based on process conditions, which include strength, temperature, pressure and corrosion resistance requirements. The heavy-duty, flanged thermowell is supplied with a 0.260" or 0.385" bore diameter to accommodate sensing elements with a 0.252" or 0.377" maximum diameter. The tapered design is suited for heavy-duty applications where greater rigidity is required for increased pressure and flow process conditions. These wells are available as separate components or as part of complete sensor assemblies.

Maximum tapered length is 16"
("U" length for non-lagging wells) = "S" - 2"
("U" length for lagging wells) = "S" - 2" - "T"
(To solve for "T"), "T" = "S" - "U" - 2" (When "U" and "S" are specified)

FLANGE	"Q" (0.260")	"V"(0.260")	"V"(0.385")
1"	7/8" Dia.	5/8" Dia.	49/64" Dia.
1 1/4" thru 3"	1 1/16" Dia.	5/8" Dia.	49/64" Dia.

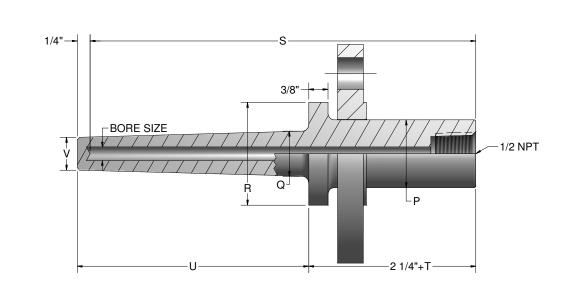


Reduced-Tip, Flanged Thermowells



Reduced-Tip, Flanged Thermowells are available in a variety of materials, flange types, flange sizes, and pressure ratings. They are also available in various lengths and optional lagging extensions. Thermowell specifications should be determined based on process conditions, which include strength, temperature, pressure and corrosion resistance requirements. The stepped construction is normally used in standard-duty applications, and increases the speed of response while maintaining mechanical strength. They are designed with standard 0.260" bore diameters to accommodate sensing elements with 0.252" maximum diameters. These wells are available as separate components or as part of complete sensor assemblies.

("U" length for non-lagging wells) = "S" - 2" ("U" length for lagging wells) = "S" - 2" - "T" (To solve for "T"), "T" = "S" - "U" - 2" (When "U" and "S" are specified)



Heavy-Duty Van Stone Thermowells

Heavy-Duty Van Stone Thermowells are available in a variety of materials, flange sizes, and pressure ratings. They are also available in various lengths and optional lagging extensions. Thermowell specifications should be determined based on process conditions, which include strength, temperature, pressure and corrosion resistance requirements. The heavy-duty Van Stone thermowell is supplied with a 0.260" or 0.385" bore diameter to accommodate sensing elements with a 0.252" or 0.377" maximum diameter respectively. Van Stone thermowells are connected using a separate and reusable backing flange, eliminating the need for expensive flange materials. The tapered design is suited for heavy-duty applications where greater rigidity is required due to increased pressure and flow process conditions. These wells are available as separate components or as part of complete sensor assemblies.

Maximum tapered length is 16" ("U" length for non-lagging wells) = "S" - 2" ("U" length for lagging wells) = "S" - 2" - "T" (To solve for "T"), "T" = "S" - "U" - 2" (When "U" and "S" are specified)

Thermowell Dimensions "V" "V" "P" PIPE SIZE "R" "Q" 0.260" 0.385" DIA. DIA. NOM. DIA. DIA. DIA. 7/8" 1.315" 5/8 49/64"

1 1/16"

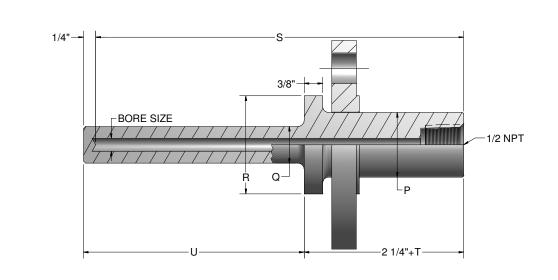
5/8

49/64"

2 7/8"

1.900"

1 1/2"


ORDER CODES 1-0 1-1 1-3 1-4 1-5 1-6 1-7 1-8 Example 09 4 15 08 T2 **C8S Order Number:** 1-0 **Well Type** 1-8 **Options** CODE DESCRIPTION CODE DESCRIPTION C8 HF Heavy-duty Van Stone 316 stainless steel well cap and chain C22 Brass well cap and chain F Full penetration weld 1-1 **Bore Size** Well stamped with customer specified S CODE **DESCRIPTION** part number 4 0.260" Dia. bore "T" Lag Dimension 1-7 0.385" Dia. bore 6 CODE DESCRIPTION Leave blank if no lag is required 1-2 Flange Size* Specify "T" dimension in inches using two digits plus any fractional length CODE DESCRIPTION 1-4 Pressure Rating* 1" (DN 25) 10 1-6 Material CODE **DESCRIPTION** 15 1 1/2" (DN 40) CODE DESCRIPTION 0 No backing flange Specify two digit material code as stated 150 Class XXin the Thermowell Material Table located Flange Type 1-3 near the front of this catalog 3 300 Class CODE **DESCRIPTION** 6 600 Class Van Stone (lap joint) 1-5 "S" Length 9 900 Class CODE **DESCRIPTION** 1500 Class Specify length in inches using two digits Carbon steel lap joint flange standard XX plus fractional length * Other flange sizes and pressure ratings available upon request

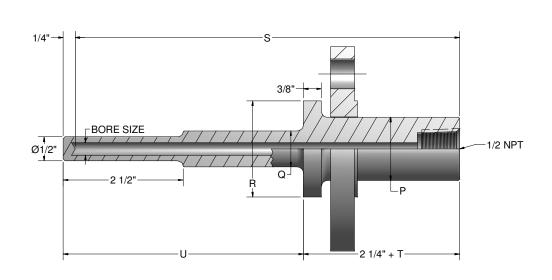
Straight Van Stone Thermowells

Straight Van Stone Thermowells are available in a variety of materials, flange sizes, and pressure ratings. They are also available in various lengths and optional lagging extensions. Thermowell specifications should be determined based on process conditions, which include strength, temperature, pressure and corrosion resistance requirements. The Straight Van Stone thermowell is supplied with a 0.260" or 0.385" bore diameter to accommodate sensing elements with a 0.252" or 0.377" maximum diameter respectively. Van Stone thermowells are connected using a separate and reusable backing flange eliminating the need for expensive flange materials. These wells are available as separate components or as part of complete sensor assemblies.

Thermowell Dimensions

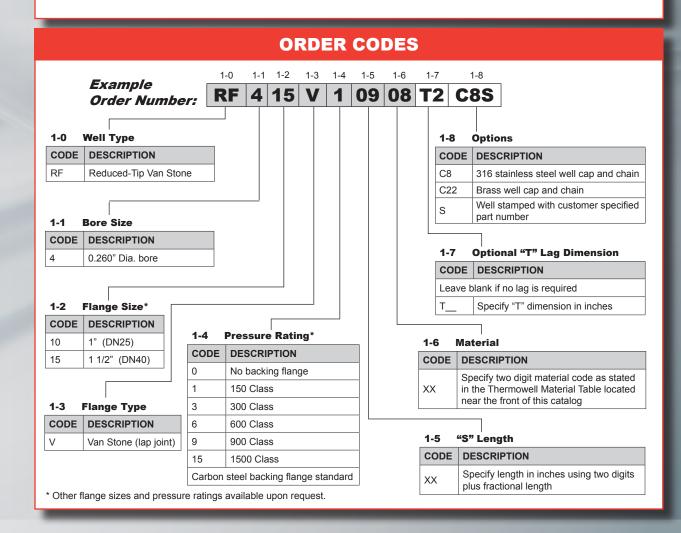
"P" PIPE SIZE		"R"	"Q" 0.260"	"Q" 0.385"
NOM.	DIA.	DIA.	DIA.	DIA.
1"	1.315"	2"	3/4"	7/8"
1 1/2"	1.900"	2 7/8"	3/4"	7/8"

("U" length for non-lagging wells) = "S" $\,$ - 2" ("U" length for lagging wells) = "S" $\,$ - 2" - "T" (To solve for "T"), "T" = "S" - "U" - 2" (When "U" and "S" are specified)


ORDER CODES 1-7 1-0 1-1 1-2 1-3 1-5 1-6 1-8 Example 15 **T2** SF 09 08 **C8S** Order Number: 1-0 **Well Type** 1-8 **Options** CODE DESCRIPTION CODE DESCRIPTION SF Straight Van Stone C8 316 stainless steel well cap and chain Brass well cap and chain C22 Well stamped with customer specified S part number 1-1 **Bore Size** CODE DESCRIPTION **Optional "T" Lag Dimension** 0.260" Dia. bore CODE DESCRIPTION 6 0.385" Dia. bore Leave blank if no lag is required Specify "T" dimension in inches 1-2 Flange Size* 1-4 Pressure Rating* 1-6 Material CODE DESCRIPTION CODE **DESCRIPTION** CODE DESCRIPTION 1" (DN25) 10 Specify two digit material code as stated 0 No backing flange 15 1 1/2" (DN40) XXin the Thermowell Material Table located 150 Class near the front of this catalog 3 300 Class 6 600 Class 1-3 Flange Type 1-5 "S" Length 9 900 Class CODE DESCRIPTION CODE DESCRIPTION 15 1500 Class Van Stone (lap joint) Specify length in inches using two digits XXCarbon steel lap joint flange standard plus fractional length Other flange sizes and pressure ratings available upon request.

Reduced-Tip Van Stone Thermowells

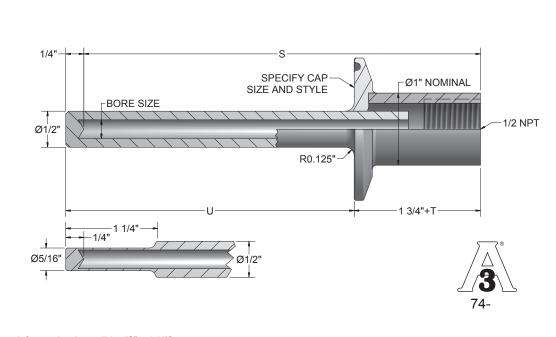
Reduced-Tip Van Stone Thermowells are available in a variety of materials, flange sizes, and pressure ratings. They are also offered in various lengths and optional lagging extensions. Thermowell specifications should be determined based on process conditions, which include strength, temperature, pressure and corrosion resistance requirements. The Reduced-Tip Van Stone thermowell is supplied with a 0.260" bore diameter to accommodate sensing elements with a 0.252" maximum diameter. The stepped construction is normally used in standard-duty applications and increases the speed of response while maintaining mechanical strength. Van Stone thermowells are connected using a separate and reusable backing flange, eliminating the need for expensive flange materials. These wells are available as separate components or as part of complete sensor assemblies.

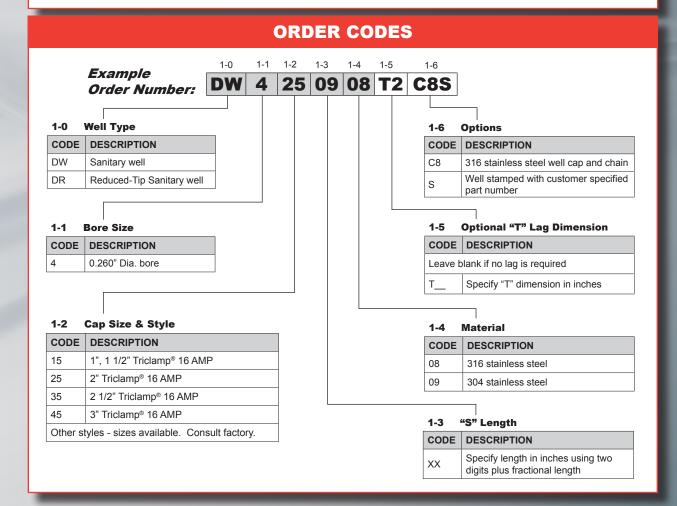


("U" length for non-lagging wells) = "S" $\,$ - 2" ("U" length for lagging wells) = "S" $\,$ - 2" - "T" (To solve for "T"), "T" = "S" - "U" - 2" (When "U" and "S" are specified)

Thermowell Dimensions

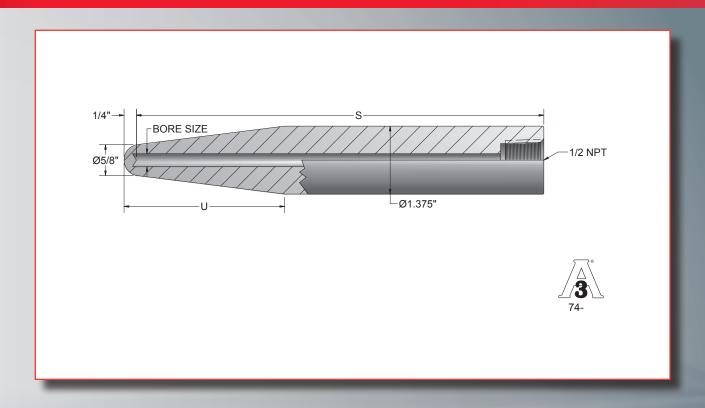
"P" PIPE SIZE	"P"	"R"	"Q"
NOM.	DIA.	DIA.	DIA.
1"	1.315"	2"	3/4"
1 1/2"	1.900"	2 7/8"	7/8"

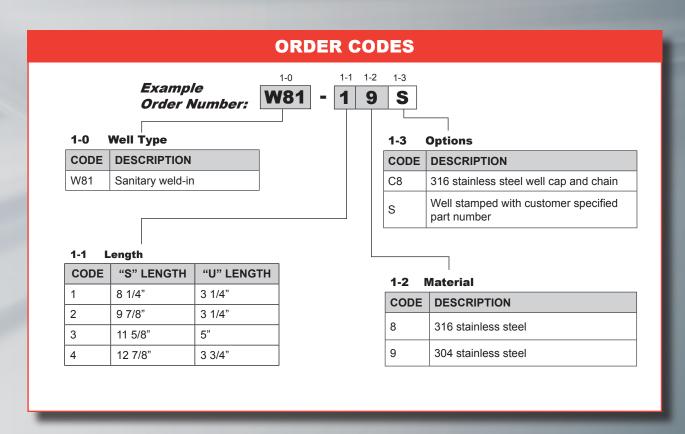

Sanitary-Connected Thermowells



Sanitary-Connected Thermowells are offered in 304 and 316 stainless steel. The DW and DR series are welded constructions, and they are available in a variety of lengths, cap styles, cap sizes, and optional lagging extensions. Thermowells are supplied with a surface finish that meets or exceeds 32 μ in R_a. Surface finishes of 15 μ in R_a or better are available upon request. They are designed with a standard 0.260" bore diameter to accommodate sensing elements with a 0.252" maximum diameter. These wells are available as separate components or as part of complete sensor assemblies.

("U" length for non-lagging wells) = "S" - 1 1/2" ("U" length for lagging wells) = "S" - 1 1/2" - "T" (To solve for "T"), "T" = "S" - "U" - 1 1/2" (When "U" and "S" are specified)



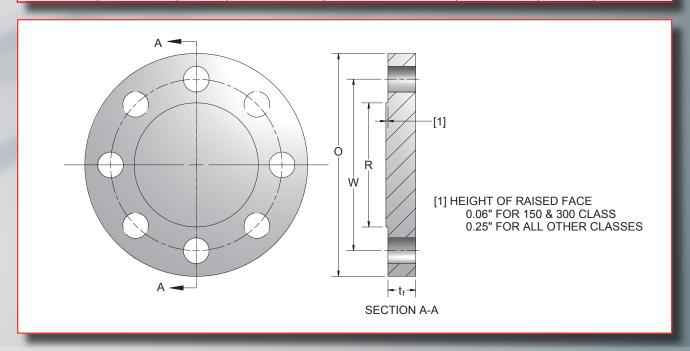

W81 Series Sanitary Weld-In Thermowells

Sanitary Weld-In Thermowells are offered in 304 and 316 stainless steel. The thermowell is designed to be welded into a tank or vat with a full crevice-free fillet-weld to prevent corrosion, bacteria growth, and product contamination. Thermowells are supplied with a surface finish that meets or exceeds 32 μ in R_a. Surface finishes of 15 μ in R_a or better are available upon request. They are designed with a standard 0.260" bore diameter to accommodate sensing elements with a 0.252" maximum diameter. These wells are available as separate components or as part of complete sensor assemblies.

Thermowell Options and Specifications

The following options are available on Pyromation thermowells. Please contact our sales department for information and current pricing.

Documentation/Testing	
Certificate of Compliance	C of C
Hydrostatic Test (Internal or External)	ASTM E1003 Compliant
Liquid Dye Penetrant Test	ASTM E165 Compliant
Material Test Reports	MTR
NACE	NACE Certification available for applicable materials. (Barstock thermowells meet this specifiction. Flanged thermowells can be heat treated to comply.)
Positive Material Identification (PMI)	X-Ray Fluorescence Spectrometry
Surface Roughness Test	ASME B46.1
Wake Frequency Calculation	ASME PTC 19.3 TW
Weld X-Ray Inspection	Call for Pricing
Services	
Expedited Delivery	Call for Pricing
Oxygen cleaning	ASTM G93 Compliant (when specified)
Stamping	10 Characters Maximum
Full-Penetration Weld	Performed by welders certified to ASME Section IX, Boiler and Pressure Vessel Code
Components/Coatings	
Abrasive Coatings	Call for Pricing
Plug and Chain - Brass	Call for Pricing
Plug and Chain - Stainless Steel	Call for Pricing
Ring-Joint Flange	Call for Pricing
Tantalum Jacket	Call for Pricing
Teflon® Coatings (FEP)	Call for Pricing
Industry Specifications	
Canadian Registration Numbers (CRN)	ASME B31.3 Process Piping
Flanged Thermowells	ASME B16.5 prior to fabrication
Heat Treating	Stress relief, annealing, and custom heat treating available upon request.
Material	ASTM Compliance and other applicable National Standards
Pipe Threads	ASME B1.20.1
Sanitary Thermowells	3-A Sanitary Council Standard. Authorization Number: 487 32 μin R _a Food Grade Surface Finish
Manufacturing Tolerances and Maxir	nums
"S" Length Maximum	32" maximum for standard drilled thermowells. For over 32" or for multi-piece construction, consult factory.
Bore "Bottom" Shape	"W" (nominal)
Bore Concentricity	± 10% of minimum wall thickness
Bore Depth	±0.020" (through 32.00")
Bore Diameter	+0.005" / -0.003" (bore sizes 0.125" through 0.406" I.D.)
Insertion Length	Lengths up to 22.50" ± 0.0625". Lengths from 22.50" through 48" ±0.125". Lengths over 48" ±0.25".
Stem Outside Diameter	±0.010"
Tapered Allowance	Maximum tapered length is 16.00". "U" dimensions greater than 16.00" in length are manufactured with a straight O.D. beginning below the process connection radius and following throughout with only the last 16.00" of "U" dimension tapered to minor O.D.
Surface Finish	32 μin R _a standard
Internal Threads	1/2"-14 - NPT per ANSI B1.20.1 (1 to 3 turns deep per UL 866 and CSA C22.2 No. 30-M1986)
Marking	Standard marking includes material grade, material traceability codes, and CRN when applicable on drilled barstock and flanged thermowells


Teflon® is a registered trademark of E. I. du Pont de Nemours and Company.

ANSI Flanged Thermowell Data Sheet

Flanges comply with ASME B16.5 and are welded in accordance to the Boiler Code by ASME Section IX specifying certified welders using ASME Section II Compliant materials. Gaskets are not supplied with flanged thermowells and assemblies.

Nominal Pipe Size (inches)	Nominal Diameter DN	Flange Class	"O" Outside Diameter of Flange (inches)	"R" Outside Diameter Raised Face Large Male and Large Tongue (inches)	"W" Diameter of Bolt Circle (inches)	Number of Bolts	"t _f " Thickness of Flange Min. (inches)
1/2	15	150	3.50	1.38	2.38	4	0.38
3/4	20	150	3.88	1.69	2.75	4	0.44
1	25	150	4.25	2.00	3.12	4	0.50
1 1/4	32	150	4.62	2.50	3.50	4	0.56
1 1/2	40	150	5.00	2.88	3.88	4	0.62
2	50	150	6.00	3.62	4.75	4	0.69
2 1/2	65	150	7.00	4.12	5.50	4	0.81
3	80	150	7.50	5.00	6.00	4	0.88
3 1/2	90	150	8.50	5.50	7.00	8	0.88
4	100	150	9.00	6.19	7.50	8	0.88
1/2	15	300	3.75	1.38	2.62	4	0.50
3/4	20	300	4.62	1.69	3.25	4	0.56
1	25	300	4.88	2.00	3.50	4	0.62
1 1/4	32	300	5.25	2.50	3.88	4	0.69
1 1/2	40	300	6.12	2.88	4.50	4	0.75
2	50	300	6.50	3.62	5.00	8	0.81
2 1/2	65	300	7.50	4.12	5.88	8	0.94
3	80	300	8.25	5.00	6.62	8	1.06
3 1/2	90	300	9.00	5.50	7.25	8	1.12
4	100	300	10.00	6.19	7.88	8	1.19
1/2	15	600	3.75	1.38	2.62	4	0.56
3/4	20	600	4.62	1.69	3.25	4	0.62
1	25	600	4.88	2.00	3.50	4	0.69
1 1/4	32	600	5.25	2.50	3.88	4	0.81
1 1/2	40	600	6.12	2.88	4.50	4	0.88
2	50	600	6.50	3.62	5.00	8	1.00
2 1/2	65	600	7.50	4.12	5.88	8	1.12
3	80	600	8.25	5.00	6.62	8	1.25
3 1/2	90	600	9.00	5.50	7.25	8	1.38
4	100	600	10.75	6.19	8.50	8	1.50

Maximum Allowable Working Pressure

			Weld	l-In Thern	nowells					
MATERIAL			0.260"	BORE	0.385"	BORE	TEMPERATURE RANGE			
WATERIAL		ORDER	Wall = 0.158"/"V" = 5/8"		Wall = 0.165"/"V" = 49/64"		(F	
ASTM SPECIFICATION	TYPE	CODE	MIN TEMP	MAX TEMP	MIN TEMP	MAX TEMP	MIN	MAX	MIN	MAX
A479 Gr. 304/304L	304/304L	09	7361 psi	3400 psi	6007 psi	2800 psi	-28 C	538 C	-20 F	1000 F
A479 Gr. 316/316L	316/316L	08	7234 psi	5200 psi	5900 psi	4200 psi	-28 C	538 C	-20 F	1000 F
A479 Gr. 347	347	36	7234 psi	5200 psi	5900 psi	4200 psi	-28 C	538 C	-20 F	1000 F
A105	A105	61	8175 psi	5062 psi	6753 psi	4259 psi	-28 C	482 C	-20 F	900 F
B164 Gr. N04400	Alloy 400	27	6178 psi	4970 psi	5103 psi	4105 psi	-28 C	482 C	-20 F	900 F
B574 Gr. N10276	Alloy C-276	29	9336 psi	5713 psi	7712 psi	4700 psi	-28 C	538 C	-20 F	1000 F
A182 Gr. F11	F11	60	8175 psi	5156 psi	6753 psi	4259 psi	-28 C	482 C	-20 F	900 F
A182 Gr. F22	F22	59	10266 psi	5156 psi	8374 psi	4259 psi	-28 C	482 C	-20 F	900 F
A182 Gr. F91	F91	91	13670 psi	5156 psi	11142 psi	4259 psi	-28 C	482 C	-20 F	900 F
B473 Gr. N08020	Alloy 20	38	8361 psi	6038 psi	6907 psi	4988 psi	-28 C	425 C	-20 F	800 F
B166 Gr. N06600	Alloy 600	03	6410 psi	1511 psi	5295 psi	1258 psi	-28 C	650 C	-20 F	1200 F
B408 Gr. N08800	Alloy 800	37	7153 psi	4923 psi	5909 psi	4067 psi	-28 C	593 C	-20 F	1100 F

				Thread	ed Ther	mowells		,				
		ODDED			AIGHT			PPED	TE	MPERAT	URE RA	NGE
MATERIAL		ORDER	0.260'	BORE	0.385	BORE	0.260"	BORE				
			Wall = 0.15	8"/"Q" = 5/8"	Wall = 0.165	"/"V" = 49/64"	Wall = 0.10	1"/"V" = 1/2"	(C F		F
ASTM SPECIFICATION	TYPE		MIN TEMP	MAX TEMP	MIN TEMP	MAX TEMP	MIN TEMP	MAX TEMP	MIN	MAX	MIN	MAX
A479 Gr. 304/304L	304/304L	09	7361 psi	3400 psi	6007 psi	2800 psi	5489 psi	2600 psi	-28 C	538 C	-20 F	1000 F
A479 Gr. 316/316L	316/316L	08	7234 psi	5200 psi	5900 psi	4200 psi	5404 psi	3800 psi	-28 C	538 C	-20 F	1000 F
A479 Gr. 347	347	36	7234 psi	5200 psi	5900 psi	4200 psi	5404 psi	3800 psi	-28 C	538 C	-20 F	1000 F
A105	A105	61	8175 psi	5062 psi	6753 psi	4259 psi	6238 psi	3934 psi	-28 C	482 C	-20 F	900 F
B164 Gr. N04400	Alloy 400	27	6178 psi	4970 psi	5103 psi	4105 psi	4713 psi	3792 psi	-28 C	482 C	-20 F	900 F
B574 Gr. N10276	Alloy C-276	29	9336 psi	5713 psi	7712 psi	4700 psi	7124 psi	4309 psi	-28 C	538 C	-20 F	1000 F
A182 Gr. F11	F11	60	8175 psi	5156 psi	6753 psi	4259 psi	6238 psi	3934 psi	-28 C	482 C	-20 F	900 F
A182 Gr. F22	F22	59	10266 psi	5156 psi	8374 psi	4259 psi	7671 psi	3934 psi	-28 C	482 C	-20 F	900 F
A182 Gr. F91	F91	91	13670 psi	5156 psi	11142 psi	4259 psi	10200 psi	3934 psi	-28 C	482 C	-20 F	900 F
B473 Gr. N08020	Alloy 20	38	8361 psi	6038 psi	6907 psi	4988 psi	6379 psi	4607 psi	-28 C	425 C	-20 F	800 F
B166 Gr. N06600	Alloy 600	03	6410 psi	1511 psi	5295 psi	1258 psi	4891 psi	1162 psi	-28 C	650 C	-20 F	1200 F
B408 Gr. N08800	Alloy 800	37	7153 psi	4923 psi	5909 psi	4067 psi	5458 psi	3757 psi	-28 C	593 C	-20 F	1100 F
MATERIAL		ORDER		TAP	ERED		LIMITED	SPACE	TEI	MPERAT	URE RA	NGE
WATERIAL		CODE	Wall = 0.15	8"/"V" = 5/8"	Wall = 0.165	= 0.165"/"V" = 49/64" Wall = 0.10		1"/"Q" = 1/2"	+			F
ASTM SPECIFICATION	TYPE		MIN TEMP	MAX TEMP	MIN TEMP	MAX TEMP	MIN TEMP	MAX TEMP	MIN	MAX	MIN	MAX
A479 Gr. 304/304L	304/304L	09	7361 psi	3400 psi	6007 psi	2800 psi	5489 psi	2600 psi	-28 C	538 C	-20 F	1000 F
A479 Gr. 316/316L	316/316L	08	7234 psi	5200 psi	5900 psi	4200 psi	5404 psi	3800 psi	-28 C	538 C	-20 F	1000 F
A479 Gr. 347	347	36	7234 psi	5200 psi	5900 psi	4200 psi	5404 psi	3800 psi	-28 C	538 C	-20 F	1000 F
A105	A105	61	8175 psi	5062 psi	6753 psi	4259 psi	6238 psi	3934 psi	-28 C	482 C	-20 F	900 F
B164 Gr. N04400	Alloy 400	27	6178 psi	4970 psi	5103 psi	4105 psi	4713 psi	3792 psi	-28 C	482 C	-20 F	900 F
B574 Gr. N10276	Alloy C-276	29	9336 psi	5713 psi	7712 psi	4700 psi	7124 psi	4309 psi	-28 C	538 C	-20 F	1000 F
A182 Gr. F11	F11	60	8175 psi	5156 psi	6753 psi	4259 psi	6238 psi	3934 psi	-28 C	482 C	-20 F	900 F
A182 Gr. F22	F22	59	10266 psi	5156 psi	8374 psi	4259 psi	7671 psi	3934 psi	-28 C	482 C	-20 F	900 F
A182 Gr. F91	F91	91	13670 psi	5156 psi	11142 psi	4259 psi	10200 psi	3934 psi	-28 C	482 C	-20 F	900 F
B473 Gr. N08020	Alloy 20	38	8361 psi	6038 psi	6907 psi	4988 psi	6379 psi	4607 psi	-28 C	425 C	-20 F	800 F
B166 Gr. N06600	Alloy 600	03	6410 psi	1511 psi	5295 psi	1258 psi	4891 psi	1162 psi	-28 C	650 C	-20 F	1200 F
B408 Gr. N08800	Alloy 800	37	7153 psi	4923 psi	5909 psi	4067 psi	5458 psi	3757 psi	-28 C	593 C	-20 F	1100 F

These tables are for reference only. Other design factors should be taken into consideration in addition to temperature and pressure, such as vibration, corrosion, and installation method.

Maximum Allowable Working Pressure

	Socket-Weld Thermowells															
				STR	AIGHT		STEP	PED		TAP	ERED		TEM	IPERATI	IDE DA	NCE
MATERIA	AL		0.260" BORE		0.385	BORE	0.260"	BORE	0.260"	BORE	0.385"	BORE	IEW	IPERAII	UKE KA	INGE
		ORDER	Wall = 0.158	3"/"Q" = 5/8"	Wall = 0.165	"/"Q" = 49/64"	Wall = 0.101	"/"V" = 1/2"	Wall = 0.158	8"/"V" = 5/8"	Wall = 0.165	'/"V" = 49/64"	С		F	
ASTM SPECIFICATION	TYPE	CODE	MIN TEMP	MAX TEMP	MIN TEMP	MAX TEMP	MIN TEMP	MAX TEMP	MIN TEMP	MAX TEMP	MIN TEMP	MAX TEMP	MIN	MAX	MIN	MAX
A479 Gr. 304/304L	304/304L	09	7361 psi	3400 psi	6007 psi	2800 psi	5489 psi	2600 psi	7361 psi	3400 psi	6007 psi	2800 psi	-28 C	538C	-20 F	1000 F
A479 Gr. 316/316L	316/316L	08	7234 psi	5200 psi	5900 psi	4200 psi	5404 psi	3800 psi	7234 psi	5200 psi	5900 psi	4200 psi	-28 C	538 C	-20 F	1000 F
A479 Gr. 347	347	36	7234 psi	5200 psi	5900 psi	4200 psi	5404 psi	3800 psi	7234 psi	5200 psi	5900 psi	4200 psi	-28 C	538 C	-20 F	1000 F
A105	A105	61	8175 psi	5062 psi	6753 psi	4259 psi	6238 psi	3934 psi	8175 psi	5062 psi	6753 psi	4259 psi	-28 C	482 C	-20 F	900 F
B164 Gr. N04400	Alloy 400	27	6178 psi	4970 psi	5103 psi	4105 psi	4713 psi	3792 psi	6178 psi	4970 psi	5103 psi	4105 psi	-28 C	485 C	-20 F	900 F
B574 Gr. N10276	Alloy C-276	29	9336 psi	5713 psi	7712 psi	4700 psi	7124 psi	4309 psi	9336 psi	5713 psi	7712 psi	4700 psi	-28 C	538 C	-20 F	1000 F
A182 Gr. F11	F11	60	8175 psi	5156 psi	6753 psi	4259 psi	6238 psi	3934 psi	8175 psi	5156 psi	6753 psi	4259 psi	-28 C	482 C	-20 F	900 F
A182 Gr. F22	F22	59	10266 psi	5156 psi	8374 psi	4259 psi	7671 psi	3934 psi	10266 psi	5156 psi	8374 psi	4259 psi	-28 C	482 C	-20 F	900 F
A182 Gr. F91	F91	91	13670 psi	5156 psi	11142 psi	4259 psi	10200 psi	3934 psi	13670 psi	5156 psi	11142 psi	4259 psi	-28 C	482 C	-20 F	900 F
B473 Gr. N08020	Alloy 20	38	8361 psi	6038 psi	6907 psi	4988 psi	6379 psi	4607 psi	8361 psi	6038 psi	6907 psi	4988 psi	-28 C	425 C	-20 F	800 F
B166 Gr. N06600	Alloy 600	03	6410 psi	1511 psi	5295 psi	1258 psi	4891 psi	1162 psi	6410 psi	1511 psi	5295 psi	1258 psi	-28 C	650 C	-20 F	1200 F
B408 Gr. N08800	Alloy 800	37	7153 psi	4923 psi	5909 psi	4067 psi	5458 psi	3757 psi	7153 psi	4923 psi	5909 psi	4067 psi	-28 C	593 C	-20 F	1100 F

				Flanged	Therm	owells						
MATERIAL									TE	MPERAT	URE RA	NGE
ASTM FLANGE		ORDER	CLAS	SS 150	CLAS	CLASS 300		CLASS 600		3	F	
SPECIFICATION	TYPE	CODE	MIN TEMP	MAX TEMP	MIN TEMP	MAX TEMP	MIN TEMP	MAX TEMP	MIN	MAX	MIN	MAX
A182 Gr. 304/304L	304/304L	09	275 psi	20 psi	720 psi	355 psi	1440 psi	710 psi	-28 C	538 C	-20 F	1000 F
A182 Gr. 316/316L	316/316L	08	275 psi	20 psi	720 psi	365 psi	1440 psi	725 psi	-28 C	538 C	-20 F	1000 F
A182 Gr. 347	347	36	275 psi	20 psi	720 psi	365 psi	1440 psi	725 psi	-28 C	538 C	-20 F	1000 F
A105	A105	61	285 psi	50 psi	740 psi	230 psi	1480 psi	460 psi	-28 C	482 C	-20 F	900 F
B564 Gr. N04400	Alloy 400	27	230 psi	50 psi	600 psi	275 psi	1200 psi	550 psi	-28 C	482 C	-20 F	900 F
B462 Gr. N10276	Alloy C-276	29	290 psi	20 psi	750 psi	365 psi	1500 psi	725 psi	-28 C	538 C	-20 F	1000 F
B462 Gr. N08020	Alloy 20	38	290 psi	80 psi	750 psi	510 psi	1500 psi	1015 psi	-28 C	425 C	-20 F	800 F
B564 Gr. N06600	Alloy 600	03	290 psi	20 psi ^[1]	750 psi	70 psi	1500 psi	135 psi	-28 C	650 C	-20 F	1200 F
B564 Gr. N08800	Alloy 800	37	275 psi	20 psi ^[1]	720 psi	325 psi	1440 psi	645 psi	-28 C	593 C	-20 F	1100 F
MATERIAL			01.40	0.000[2]	01.40	0.4500	01.40	0.0500	TE	MPERAT	URE RA	NGE
ASTM FLANGE	TYPE	ORDER	CLAS	S 900 ^[2]	CLAS	S 1500	CLAS	S 2500	(С		F
SPECIFICATION	I ITPE	0002	MIN TEMP	MAX TEMP	MIN TEMP	MAX TEMP	MIN TEMP	MAX TEMP	MIN	MAX	MIN	MAX
A182 Gr. 304/304L	304/304L	09	2160 psi	1065 psi	3600 psi	1770 psi	6000 psi	2845 psi	-28 C	538 C	-20 F	1000 F
A182 Gr. 316/316L	316/316L	08	2160 psi	1090 psi	3600 psi	1820 psi	5900 psi	3030 psi	-28 C	538 C	-20 F	1000 F
A182 Gr. 347	347	36	2160 psi	1090 psi	3600 psi	1820 psi	5900 psi	3030 psi	-28 C	538 C	-20 F	1000 F
A105	A105	61	2220 psi	690 psi	3705 psi	1150 psi	6170 psi	1915 psi	-28 C	482 C	-20 F	900 F
B564 Gr. N04400	Alloy 400	27	1800 psi	825 psi	3000 psi	1370 psi	5000 psi	2285 psi	-28 C	482 C	-20 F	900 F
B462 Gr. N10276	Alloy C-276	29	2250 psi	1090 psi	3750 psi	1820 psi	6250 psi	3030 psi	-28 C	538 C	-20 F	1000 F
B462 Gr. N08020	Alloy 20	38	2250 psi	1525 psi	3750 psi	2540 psi	6250 psi	4230 psi	-28 C	425 C	-20 F	800 F
B564 Gr. N06600	Alloy 600	03	2250 psi	205 psi	3750 psi	345 psi	5295 psi	570 psi	-28 C	650 C	-20 F	1200 F
B564 Gr. N08800	Alloy 800	37	2160 psi	965 psi	3600 psi	1610 psi	5900 psi	2685 psi	-28 C	593 C	-20 F	1100 F

These tables are for reference only. Other design factors should be taken into consideration in addition to temperature and pressure, such as vibration, corrosion, and installation method.

^[1] Class 150 flanges are only rated to 538 °C [1,000 °F].
[2] For NPS less than 3" a Class 1500 flange will be provided. The Class 900 flange and Class 1500 flange are dimensionally the same for this size range. For NPS 3" and 4" Class 900 or Class 1500 must be specified.

Corrosive Service Guide

Corrosive Service Guide to Materials for Sheaths and Thermowells

Refer to A.S.M.E. Boiler Code, Section VIII for allowable stress levels

(Teflon®-coated thermowells and/or Teflon® sheaths may be substituted for all corrosive agents listed)

CORROSIVE AGENT	TEMP. °C	TEMP. °F	CONC.	RECOM. MATERIAL	CORROSIVE AGENT	TEMP.	TEMP. °F	CONC.	RECOM. MATERIAL
Acetic Acid (Glacial)	199	[390]	ALL	316 SS	Chlorine (Gas)	93	[200]	ALL	Monel®
Acetic Acid	143	[290]	80%	Hast. C	, ,	199	[390]	ALL	316 SS ^[1]
	199	[390]	50%	316 SS	Chlorine (Gas - Moist)	66	[150]	ALL	Hast C
	143	[290]	80%	Carp. 20 ^[1]	Chloroacetic Acid	182	[360]	ALL	Hast. B
Acetic Anhydride	132	[270]	ALL	Hast. C	Chloroform	93	[200]	ALL	Nickel
	199	[390]	ALL	316 SS ^[1]		93	[200]	ALL	Carp. 20 ^[1]
Acetone	199	[390]	ALL	316 SS	Chromic Acid	93	[200]	50%	Titanium
Acetylene	199	[390]	ALL	304 SS	0	93	[200]	50%	Hast. C[1]
Alcohol, Ethyl	93	[200]	ALL	Hast. C	Citric Acid	127	[260]	ALL	Hast. C
Ali	199 143	[390]	ALL	316 SS ^[1] Hast. B	Copper Chloride	93 88	[200]	ALL	Carp. 20 ^[1]
Aluminum Chloride (Aqueous)	143	[290] [290]	ALL ALL	Nickel ^[1]	Copper Chloride	88	[190] [190]	ALL ALL	Titanium Hast. C ^[1]
Aluminum Nitrate (Saturated)	93	[200]	ALL	446 SS	Copper Nitrate	149	[300]	ALL	304 SS
Admindm Nitrate (Saturated)	88	[190]	ALL	316 SS ^[1]	Copper Sulfate	93	[200]	ALL	Hast. C
Aluminum Sulfate (Saturated)	93	[200]	ALL	Titanium	Copper cultate	199	[390]	ALL	316 SS ^[1]
/ Harristan Ganato (Gataratoa)	93	[200]	ALL	316 SS ^[1]	Corn Oil	238	[460]	ALL	TFE
Ammonia (Anhydrous)	293	[560]	ALL	316 SS		193	[380]	ALL	FEP
Ammonia (Gas)	93	[200]	ALL	304 SS		171	[340]	ALL	316 SS ^[1]
Ammonium Chloride	88	[190]	ALL	Titanium	Crude Oil	93	[200]	ALL	304 SS
	293	[560]	ALL	Nickel ^[1]	Cyanogen Gas	238	[460]	ALL	TFE
	71	[160]	50%	Nickel		193	[380]	ALL	FEP
Ammonium Hydroxide	27	[80]	ALL	Steel		171	[340]	ALL	316 SS ^[1]
	82	[180]	ALL	Steel ^[1]	Ether	88	[190]	ALL	304 SS
Ammonium Nitrate	93	[200]	ALL	Carp. 20	Ethyl Acetate	93	[200]	ALL	Titanium
Ammonium Sulfate	93	[200]	SAT.	Hast. B	5/1 1 O 1 1 1 (D)	199	[390]	ALL	316 SS ^[1]
	143	[290]	SAT.	304 SS ^[1]	Ethyl Chloride (Dry)	293	[560]	ALL	316 SS
	93	[200]	10 - 40%	Titanium	Ethylene Glycol	93	[200]	ALL	Carp. 20
Arred Arabata	199 143	[390]	10 - 40%	316 SS ^[1]	Ethylone Oxide	93	[200]	ALL	304 SS ^[1]
Amyl Acetate Aniline	254	[290] [490]	ALL ALL	304 SS 304 SS	Ethylene Oxide	21 199	[70] [390]	ALL ALL	Hast. C 316 SS ^[1]
Barium Chloride (Saturated)	93	[200]	ALL	Hast. C	Fatty Acids	199	[390]	ALL	316 SS
Bandin Chloride (Saturated)	293	[560]	ALL	Inconel®[1]	Ferric Chloride	143	[290]	ALL	Titanium
Barium Hydroxide (Saturated)	104	[220]	50%	Carp. 20	1 cirio officiac	27	[80]	ALL	Hast. C ^[1]
Bariani Hydroxide (Gatarated)	199	[390]	ALL	316 SS ^[1]	Ferric Sulfate	49	[120]	ALL	Carp. 20
Beer	88	[190]	/	304 SS		88	[190]	10%	316 SS
Benzene (Benzol)	104	[220]	ALL	Carp. 20	Ferrous Sulfate	27	[80]		Titanium
	104	[220]	ALL	304 SS ^[1]		93	[200]	ALL	304 SS ^[1]
Benzoic Acid	199	[390]	ALL	Titanium	Formaldehyde	49	[120]	ALL	304 SS
	199	[390]	ALL	304 SS ^[1]		49-293	[120-560]	50%	304 SS ^[1]
Black Liquor	238	[460]	ALL	TFE	Formic Acid (Anhydrous)	93	[200]	50%	Carp. 20
	193	[380]	ALL	FEP	Freon (F-11)	204	[400]	ALL	Monel [®]
	93	[200]	ALL	Carp. 20 ^[1]		204	[400]	ALL	316 SS ^[1]
Bleach (Active Chlorine)	60	[140]	12.5%	Hast. C	Furfural	199	[390]	ALL	Nickel
Borax	199	[390]	ALL	316 SS		199	[390]	ALL	304 SS ^[1]
Boric Acid	293	[560]	ALL	Hast. C	Gallic Acid	238	[460]	ALL	TFE
District Asia	93	[200]	ALL	Nickel ^[1]		193	[380]	ALL	FEP
Brine Acid	60 27	[140]	ALL	Hast. C	Casalina (Unloaded)	199 154	[390]	ALL	316 SS ^[1]
Promine (Liquid)	293	[80] [560]	ALL ALL	Brass ^[1] Tantalum	Gasoline (Unleaded)	16	[310] [60]	ALL	Hast. C 446 SS
Bromine (Liquid)	93	[200]	ALL	Aluminum ^[1]		171	[340]		Steel ^[1]
Butane	171	[340]	ALL	Steel		238	[460]		TFE
Butyl Acetate	93	[200]	ALL	Titanium	Gasoline (Refined)	193	[380]		FEP
	188	[370]	ALL	316 SS ^[1]	(88	[190]		Steel ^[1]
Butyl Alcohol	199	[390]	ALL	316 SS		27	[80]	ALL	Nickel
Butyric Acid	143	[290]	ALL	Carp. 20	Glucose	193	[380]	ALL	316 SS ^[1]
1	199	[390]	ALL	316 SS ^[1]		27	[80]	ALL	Hast. B
Calcium Bisulfite	93	[200]	ALL	TFE	Glue	60	[140]	ALL	Steel ^[1]
	193	[380]	ALL	FEP		127	[260]	ALL	304 SS
	171	[340]	ALL	316 SS ^[1]	Glycerine	88	[190]	50%	Titanium
Calcium Chlorate	238	[460]	ALL	TFE	Hydrobromic Acid	121	[250]	50%	Hast. B ^[1]
	193	[380]	ALL	FEP		60	[140]	38%	Hast. B
	93	[200]	ALL	316 SS ^[1]	Hydrochloric Acid	238	[460]	ALL	TFE
Calcium Chloride (Saturated)	171	[340]	ALL	Hast. C	Hydrocyanic Acid	193	[380]	ALL	FEP
Calaium Hydravida	93	[200]	ALL 50%	Carp. 20 ^[1]		171	[340]	ALL	316 SS ^[1]
Calcium Hydroxide	93 88	[200]	50%	Hast. C 304 SS ^[1]	Hydroflouric Acid	238 193	[460]	ALL	TFE FEP
Carbonic Acid	293	[190] [560]	SAT. ALL	Carp. 20	Trydrollouric Acid	93	[380]	ALL ALL	Hast. C ^[1]
Carbonic Acid	171	[340]	ALL	316 SS ^[1]		293	[560]	ALL	Carp. 20
Carbon Dioxide (Dry)	427	[800]	ALL	Brass	Hydrogen Chloride (Gas, Dry)	38	[100]	ALL	304 SS
Carbonated Beverages	100	[212]	ALL	304 SS	Hydrogen Flouride (Dry)	199	[390]	ALL	304 SS ^[1]
Carbon Disulfide	93	[200]	ALL	Titanium	,	88	[190]	90%	Hast. C
	199	[390]	ALL	316 SS ^[1]	Hydrogen Peroxide	71	[160]	ALL	316 SS
Carbon Tetrachloride	93	[200]	ALL	304 SS	Hydrogen Sulfide (Dry)	293	[560]	ALL	316 SS
					, .5 (,)	1	1 2		1

All materials listed are rated < 2 Mils penetration/year except as noted: [1] = < 20 Mils penetration/year

Teflon® is a registered trademark of E.I. du Pont de Nemours & Co.

Monel® and Inconel® are registered trademarks of Special Metals Corporation.

Corrosive Service Guide

Corrosive Service Guide to Materials for Sheaths and Thermowells Refer to A.S.M.E. Boiler Code, Section VIII for allowable stress levels

(Teflon® coated thermowells and/or Teflon® sheaths may be substituted for all corrosive agents listed)

CORROSIVE AGENT	TEMP. °C	TEMP.	CONC.	RECOM. MATERIAL	CORROSI	VE AGENT	TEMP.	TEMP. °F	CONC.	RECOM. MATERIAL
lodine	83	[190]	ALL	Hast. C	Sea Water	(Cavitation)				316 SS
Tourie	21	[70]	ALL	Nickel	Soap Solut		16	[60]	ALL	446 SS
Kerosene	238	[460]	ALL	TFE			54	[130]	ALL	Nickel ^[1]
	193	[380]	ALL	FEP	Sodium Bio	carbonate	171	[340]	20%	316 SS
	171	[340]		Steel ^[1]	Sodium Bis	sulfite	71	[160]	10%	316 SS
Ketones	32	[90]	ALL	Hast. C			93	[200]	10 - 40%	Carp. 20
	127	[260]	ALL	316 SS ^[1]	Sodium Ca	arbonate	93	[200]	30%	Carp. 20
Lactic Acid	154	[310]	ALL	Titanium			293	[560]	10-100%	Hast. B[1]
	116	[240]	ALL	Hast. B ^[1]	Sodium Ch		27	[80]	30%	Nickel
Lime (Sulfur)	238	[460]	ALL	TFE	Sodium Flo	ouride	71	[160]	ALL	Monel®
	193	[380]	ALL	FEP			77	[170]	ALL	Carp. 20 ^[1]
	154	[310]	ALL	316 SS ^[1]	Sodium Hy	droxide	104	[220]	ALL	Monel®
Linseed Oil	60	[140]	ALL	Carp. 20	O a di una Nia		71	[160]	ALL	316 SS ^[1] 316 SS
Magnasium Chlarida	27 143	[08]	ALL	Steel ^[1]	Sodium Nit Sodium Nit		171	[340]	60%	
Magnesium Chloride	88	[290] [190]	ALL 50%	Nickel Carp. 20[1]	Sodium Nit	ine	93	[200] [200]	Saturated 40%	Titanium 304 SS ^[1]
Magnesium Hydroxide	93	[200]	ALL	304 SS	Sodium Pe	rovide	16	[60]	10%	446 SS
Magnesium Sulfate	93	[200]	60%	Nickel	Sodianii	TOXIGE	171	[340]	10%	316 SS ^[1]
Wagnesium Sunate	171	[340]	ALL	316 SS ^[1]	Sodium Ph	osphate Acid	93	[200]	ALL	Titanium
Mercuric Chloride	143	[290]	ALL	Tantalum	Codidiii i ii	iospriate / tota	93	[200]	ALL	304 SS ^[1]
Werearie Ornoride	77	[170]	10%	Hast. C ^[1]	Sodium Sili	icate	27	[80]	ALL	446 SS ^[1]
Mercury	293	[560]	ALL	304 SS	Codidin Oil	ioato	166	[330]	ALL	316 SS ^[1]
Methyl Chloride (Dry)	171	[340]	ALL	316 SS	Sodium Su	ılfate	199	[390]	ALL	316 SS
Methylene Chloride	93	[200]	ALL	Carp. 20	Sodium Su		238	[460]	50%	TFE
Milk	93	[200]		304 SS			193	[380]	50%	FEP
Naphtha	16	[60]	ALL	446 SS			93	[200]	50%	316 SS ^[1]
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	116	[240]	ALL	304 SS ^[1]	Sodium Su	ılfite	93	[200]	10%	304 SS
Natural Gas	238	[460]		TFE	Sodium Th		16	[60]	25%	446 SS
	193	[380]		FEP			116	[240]	ALL	316 SS ^[1]
	43	[110]		Steel ^[1]	Steam (Lov	w Pressure)				Inconel
Nickel Chloride	93	[200]	80%	Hast. C						304 SS ^[1]
Nickel Sulfate	82	[180]	10%	Tantalum	(Me	dium Pressure)				Nickel
	93	[200]	ALL	304 SS ^[1]						304 SS ^[1]
Nitric Acid	21	[70]	ALL	304 SS		nh Pressure)				316 SS ^[1]
	93	[200]	40%	304 SS	Sulfur		293	[560]	ALL	304 SS
Nitrobenzene	143	[290]	ALL	Carp. 20	0 15 01 1	(5)	871	[1600]	ALL	Alloy 556
0	171	[340]	ALL	316 SS ^[1]	Sulfur Chlo	oride (Dry)	32	[90]	ALL	Tantalum
Oleic Acid	138	[280]	ALL	316 SS	Cultur Diam	ida (Dav)	293	[560]	ALL	Nickel ^[1]
Oleum	49 116	[120] [240]	40% ALL	Hast. C 316 SS ^[1]	Sulfur Diox	aide (Dry)	49 293	[120] [560]	ALL ALL	Steel 316 SS ^[1]
Oxalic Acid	93	[200]	ALL	Tantalum	Sulfur Triox	vido (Dry)	238	[460]	ALL	TFE
Oxalic Acid	93	[200]	ALL	Carp. 20 ^[1]	Sullui IIIO	Nide (Diy)	193	[380]	ALL	FEP
Oxygen	271	[520]	ALL	Tantalum			293	[560]	ALL	304 SS ^[1]
Oxygen	16	[60]	ALL	446 SS	Sulfuric Aci	id	38	[100]	100%	Carp. 20
	171	[340]	ALL	316 SS ^[1]	0 4.10710		121	[250]	60%	Hast. B
Palmitic Acid	238	[460]	ALL	TFE	Sulfurous A	Acid	71	[160]	ALL	Titanium
	193	[380]	ALL	FEP			177	[350]	ALL	Carp. 20[1]
	199	[390]	ALL	304 SS ^[1]	Tannic Acid	t	93	[200]	10 - 20%	Titanium
Phenol (Carbolic Acid)	293	[560]	ALL	316 SS			93	[200]	ALL	304 SS ^[1]
Phosphoric Acid	93	[200]	50-85%	Hast. C	Tartaric Aci	id	199	[390]	ALL	304 SS
Phosphoric	43	[110]	50-85%	Carp. 20	Titanium Te	etrachloride	27	[08]	ALL	Carp. 20
	171	[340]	ALL	316 SS			138	[280]	ALL	Titanium
Phosphoric Solutions	27	[80]	ALL	Titanium	Toluene (To	oluol)	171	[340]	ALL	Steel
Picric Acid	21	[70]	ALL	Aluminum			93	[200]	ALL	304 SS
	199	[390]	ALL	316 SS ^[1]	Trichloroac	cetic Acid	238	[460]	ALL	TFE
Potassium Bromide	93	[200]	30%	Titanium			193	[380]	ALL	FEP
	93	[200]	30%	446 SS	T 2 . 1. 1	h. 1	93	[200]	ALL	Hast. C[1]
Potassium Carbonate	93	[200]	50%	304 SS	Trichloroeth		71	[160]	ALL	Inconel®
Potassium Chlorate Potassium Hydroxide	171 93	[340]	30% 50%	316 SS Nickel	Turpentine Whiskey ar		88	[190]	ALL ALL	304 SS 304 SS
	171	[200]			Xylene (Xy		00	[100]	ALL	446 SS
Potassium Nitrate	277	[340] [530]	80% 80%	Aluminum 446 SS ^[1]	Zinc Chlori		88 82	[190] [180]	to 70%	Titanium
Potassium Permanganate	21	[70]	20%	Hast C.	ZIIIC CIIIOII	uc	293	[560]	ALL	Hast. B ^[1]
i otassium r emianganate	171	[340]	20%	316 SS ^[1]	Zinc Sulfate	e	93	[200]	SAT.	316 SS
Potassium Sulfate	171	[340]	10%	316 SS	Zinc Sunat	C	33	[200]	JOAI.	01000
Propane	60	[140]	ALL	446 SS						
. Topano	27	[80]	ALL	Brass						
Pyrogallic Acid	27	[80]	ALL	Copper						
. ,gamo / tota	171	[340]	ALL	316 SS ^[1]		Reprinted with pe	rmission.	Scheitze	r/Corrosion Resis	tance Tables
Salicylic Acid	116	[240]	ALL	Hast. C		4th Edition, Revise				
	171	[340]	ALL	316 SS ^[1]		Dekker, Inc., N.Y.		,		-,
Sea Water (Stagnant)		' '		Monel®						
, , ,	1	1					1	1	1	

All materials listed are rated < 2 Mils penetration/year except as noted: [1] = < 20 Mils penetration/year

Teflon® is a registered trademark of E.I. du Pont de Nemours and Company.

Monel® and Inconel® are registered trademarks of Special Metals Corporation.

Thermowell Design Evaluator

Based on calculations in accordance with ASME PTC 19.3 TW

ASME PTC 19.3 TW, the U.S. standard for evaluating the mechanical design of a thermowell used in a broad range of applications, was updated in 2010 to include a greater number of thermowell and process variables. Sometimes referred to as "Wake Frequency Calculation", the revision incorporates new elements for evaluating thermowell constructions that will reduce the chance of vibration and stress damage to the vessel, as well as avoid vibration damage to the temperature sensor it protects.

Please input data regarding your thermowell dimensions, thermowell properties and material/media/process properties in the designated spaces below. We will review the data, process the calculations and contact you with the results. Feel free to contact one of our Product Engineers to go through the process calculations.

Unit of Measure:	~	
Mounting Type:	~	1. Input y 2. We rev
Shank Profile:	~	the ca 3. We wi
Material:	~	with re
Process Connection:	~	4. (Option our Pr
Unsupported Length (L):		in to go t
Bore Diameter (d):	~	in calcul
Root Diameter (A):		in
Tip Diameter (B):		in
Minimum Tip Thickness (t):		in
Fillet Radius at Support Plane (b):		in
Fillet Radius at Base of Step (b _s):		in
Reduced-Diameter Shank Length (L _s):		in
② Damping Factor (ζ):		
Shielded Length of T-Well (L _o):		in
Max. Fluid Velocity (V):		ft/s
Fluid Density (ρ)		lb/ft^3
Max. Operating Temperature (T):		F
Max. Operating Pressure (P):		psig
Dynamic Viscosity (µ):		cP (1 centipoise = mPa*s)
Tag/Reference #:		

- 1. Input your data online
- 2. We review and process the calculations
- 3. We will contact you with results
- 4. (Optional) Contact one of our Product Engineers to go through process calculation questions

Find this page at: www.Pyromation.com/TechInfo/WakeFreq.aspx

Pyromation makes no claims regarding performance or safety based on the calculations provided. The results communicated are based on the ASME PTC 19.3 TW design standard for reliable service of tapererd, straight and stepped-shank thermowells in a broad range of applicatiosn. The user assumes full responsibility for installation, application and operation of the product.

Typical Thermowell Design Evaluator Report

THIS IS A RESPONSE EXAMPLE ONLY - DO NOT USE DATA FOR ANY OTHER PURPOSE

Straight or Tapered Thermowell Wake Frequency Evaluation Results per PTC 19.3-TW 2010

					OUTPUTS				
Date:	8/3/2011	Ĺ							-
					Frequency Condition		PASS		
Customer Name:	Dave My	ers			Frequency Ratio		0.073		
					Steady State Stress Limit		PASS		
Company/Org. Name:	Pyromati	on, Inc			_				
					Dynamic Stress Limit		PASS		
E-mail Address:	dmyers@	pyromation.	com						
					Pressure Limit		PASS		
Tag Number:	TW-100								
INPUTS									
Mounting Type:	Threade	d							
Material type:	316SS	u							
Dimensions:					Fluid Properties:				
Length	L=	6.000	in	0.152 m	Fluid velocity	V=	15.50	ft/s	4.72 m/s
Root diameter	A=	1.063	in	0.027 m	Fluid density	ρ=	4.300	lb/ft ³	68.9 kg/m ³
Tip diameter	B=	0.625	in	0.016 m	Fluid temperature	T=	450.0	°F	232.2 ℃
Bore diameter	d=	0.260	in	0.007 m	Gauge pressure	P=	150.0	psig	1034214.0 Pa
Tip thickness	t=	0.188	in	0.005 m	Viscosity	μ=	0.019	ср	
Fillet radius at base	b=	0.178	in	0.005 m					
Damping Factor	ζ=	0.0005							
Shielded length	$L_0=$	0.000	in	0.000 m					
Sensor density	$\rho_{\text{s}} =$	2700	kg/m ³						
T-Well Material Properties									
Allowable stress	S=	1800	0 psi	1.24E+08 Pa					
Fatigue limit	$S_{f}=$	540	0 psi	3.72E+07 Pa					
Modulus at temperature	E=	2590000	0 lbf/in^2	1.79E+11 Pa					
Density of t-well material	$\rho_{\text{m}}\!\!=\!$	0.29	0 lbf/in^3	8026.9 kg/m^3					

Summary/ Suggestions:

^{*}Pyromation makes no claims regarding performance or safety based on the calculations provided. The results communicated are based on the ASME PTC 19.3 TW-2010 design standard for reliable service of tapered, straight and stepped-shank thermowells in a broad range of applications. The user assumes full responsibility for installation, application and operation of the product.

Complete Manufacturer Capabilities & Services

on meosing

SPEED, SERVICE, SOLUTIONS... BEYOND MEASURE®

Operating since 1962, Pyromation is the premier temperature sensor manufacturer in North America. From RTDs and thermocouples to thermowells, connection heads, accessories and complete assemblies, Pyromation can make the right temperature sensor for your process and deliver it faster than anyone in the industry. A broad product line, industry experience, friendly customer service and quick delivery make Pyromation the best choice for your temperature measurement applications. For more information, please call us or visit www.pyromation.com.

5211 Industrial Road // Fort Wayne, IN 46825, USA 260.484.2580 // www.pyromation.com

Thermowells

Standard and Custom-Drilled Bar-Stock Designs

